
LECTURE 39 EXAMPLES FOR THE SUBSTITUTION METHOD

In this lecture, we go through a wide range of examples that use the method of substitution, in obvious
and less obvious manners.

Example. (Trigonometry: rewrite before substitution)

(1)
∫
sin2 (x) dx.

(2)
∫
cos2 (x) dx.

(3)
∫
tan (x) dx.

(4)
∫
sec (x) dx.

Example. (Samplers of various derivative rules)

(1)
∫

1
x ln(x)dx.

(2)
∫

2
1+25x2 dx.

(3)
∫

dy

tan−1( y
7 )(49+y2)

.

Example. (Less obvious but direct substitution)

(1)
∫

2zdz
3√z2+1

.

(2)
∫

1√
x(2+3

√
x)

3 dx.

(3) (rewrite after substitution)
∫

x√
x−8dx.

(4) (rewrite after substitution)
∫
p (p+ 7)

8
dp.

(5) (rewrite after substitution)
∫
x3
√
x2 + 2dx.

(6)
∫

1√
xe−

√
x csc2

(
3e
√
x − 2

)
dx.

Example. The velocity of a particle moving back and forth on a line is v = ds
dt = 3 sin (6t) for all t. If s = 0

when t = 0, �nd the value of s when t = π
2 seconds.

Definite Integral Substitutions and the Area Between Curves

Recall that for inde�nite integrals, we substitute in the following way.∫
f (g (x)) · g′ (x) dx u=g(x)

=

∫
f (u) du.

For de�nite integrals, all we need to be careful about, in addition to the above procedure, is the integrating
limit. We are interesting in solving problems like the following,∫ b

a

f (g (x)) · g′ (x) dx.

Now, one makes a substitution u = g (x). But the integrating limits are in x not in u, i.e. they read x = a
and x = b. So, to change to u expressions, we must convert them into u = g (a) and u = g (b). Thus,∫ b

a

f (g (x)) · g′ (x) dx =

∫ g(b)

g(a)

f (u) du.

Example. Find
∫ 1

−1 3x
2
√
x3 + 1dx.

Symmetries of the integrand greatly simplify its de�nite integral.

Theorem. Let f be continuous on the symmetric integral [−a, a].
(1) If f is even, then

∫ a
−a f (x) dx = 2

∫ a
0
f (x) dx.

(2) If f is odd, then
∫ a
−a f (x) dx = 0.

Remark. The interval must be symmetric about 0. To see why these claims are true, draw a picture.
1
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Area Between Curves

De�nition. If f and g are continuous with f (x) ≥ g (x) throughout [a, b], then A, area of the reigon

between the curves y = f (x) and y = g (x) from a to b, is the integral of f − g from a to b:

A =

∫ b

a

[f (x)− g (x)] dx.

Remark. You must identify which function is on the top and which one is on the bottom. Sketching the
functions will help.

Sketching the functions will also increase your vocabulary of the types of scenarios two functions can create.
For example, on [a, b], two functions can intersect, or not intersect. If they don't intersect (mathematically
means f (x) = g (x) does not have a solution on [a, b]), then the area between them is the region below the
top and above the bottom, and to the right of x = a and to the left of x = b. If they do intersect, you
must solve f (x) = g (x) on [a, b] to �nd the point(s) of intersection. If you �nd two intersections, then they
become your limits of integration. If you only �nd one intersection, you need to identify the other boundary
implicit in the problem, to decide the other limit of integration.

Example. Find the area of the region bounded above by the curve y1 = 2e−x + x and below by the curve
y2 = ex/2, on the left by x = 0 and on the right by x = 1.

Solution. Once you identi�ed (see appendix for details, only if you are keen) that y1 (x) ≥ y2 (x) for all
x ∈ [0, 1], then the problem is easy, you do

A =

∫ 1

0

(y1 (x)− y2 (x)) dx

=

∫ 1

0

(
2e−x + x− ex

2

)
dx

=

[
−2e−x + x2

2
− ex

2

]x=1

x=0

=

[(
−2e−1 + 1

2
− e

2

)
−
(
−2 + 0− 1

2

)]
= −2

e
+

1

2
− e

2
− (−2) + 1

2

= 3− 2

e
− e

2

Example. Find the area of the region enclosed by the parabola y = 2− x2 and the line y = −x.

Another technique is to utilize the freedom of the coordinate against which you integrate. Suppose you
are now given two curves x = f (y) and x = g (y), and are asked to �nd the area A between them over the
interval [c, d], then

A =

∫ d

c

[f (y)− g (y)] dy

where f is always the right-hand function and g is always the left-hand function.

Example. Find the area of the region in the �rst quadrant that is bounded above by y =
√
x and below by

the x-axis and the line y = x− 2. Do the problem in x and y coordinate respectively.

On the example with 2e−x + x and ex/2

Remark. This is example 4 in section 5.6. The book does NOT however justify the plots very well. It just
shows the plot. Frankly, you have to be able to graph both functions to identify the region.

This is an unusual solution discussion. But I want to call to your attention to what I am really thinking.
Here are the several questions I ask:



LECTURE 39 EXAMPLES FOR THE SUBSTITUTION METHOD 3

(1) In order to identify the top and bottom function, you need to prove either y1 (x) ≥ y2 (x) or y2 (x) ≥
y1 (x) for x ∈ [0, 1]. But, it is very hard to do in this problem. You are comparing

y1 = 2e−x + x, y2 = ex/2

and ask which one is always bigger on [0, 1]. Not an obvious job.
(2) Another strategy is to check whether they have intersections on this interval. If they don't, it means

on this interval they don't cross each other at all, and hence are ordered. But, checking intersections
means checking if there is a solution to y1 = y2, or 2e−x + x = ex

2 . Is this simple to solve without
looking it up? No.

(3) However, it is reasonable to check the following.
We know how the left endpoints look like.

y1 (0) = 2 >
1

2
= y2 (0)

so y1 starts on top of y2. Now, it would make sense to check if the minimum of y1 is bigger than the
maximum of y2 on [0, 1], because if it is, then y1 and y2 never touch. We �nd that

y′1 (x) = −2e−x + 1

which means it has a critical point at

e−x =
1

2
=⇒ x = ln (2) .

We �nd y1 (0) = 2, y1 (1) = 2
e + 1 and y1 (ln (2)) = 2e−(ln 2) + x = 1 + ln (2). So, which one is

the smallest? The calculator tells me 1 + ln (2) is the smallest, only by a small margin. Thus, the
minimum of y1 (x) on [0, 1] is 1 + ln (2). The maximum of y2 is the right endpoint because it is a
monotone increasing function,

max y2 (x) =
e

2
≈ 1.359

which is less than 1+ ln (2) ≈ 1.693. Hence, the two functions don't touch, and remained ordered on
[0, 1] that y1 (x) ≥ y2 (x). We are done, with the help of a calculator.

(4) You may wonder how to show part 3 without using a calculator. And I am gonna tell you that it is
hard!

Among the endpoints and critical point, we �nd de�nitely that y1 (0) = 2 is the largest, of course.
So, we compare the other two values 2

e+1 and ln (2)+1, or simply 2
e and ln (2). How do you compare

two numbers? We know if ex > ey then x > y since the exponential function is monotone increasing.

Thus, we now compare e
2
e and eln(2) = 2. We raise both sides to the eth power to now compare e2

and 2e. And now the struggle is real.


